Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation.

نویسندگان

  • Bingruo Wu
  • Yidong Wang
  • Wendy Lui
  • Melissa Langworthy
  • Kevin L Tompkins
  • Antonis K Hatzopoulos
  • H Scott Baldwin
  • Bin Zhou
چکیده

RATIONALE Formation of heart valves requires early endocardial to mesenchymal transformation (EMT) to generate valve mesenchyme and subsequent endocardial cell proliferation to elongate valve leaflets. Nfatc1 (nuclear factor of activated T cells, cytoplasmic 1) is highly expressed in valve endocardial cells and is required for normal valve formation, but its role in the fate of valve endocardial cells during valve development is unknown. OBJECTIVE Our aim was to investigate the function of Nfatc1 in cell-fate decision making by valve endocardial cells during EMT and early valve elongation. METHODS AND RESULTS Nfatc1 transcription enhancer was used to generate a novel valve endocardial cell-specific Cre mouse line for fate-mapping analyses of valve endocardial cells. The results demonstrate that a subpopulation of valve endocardial cells marked by the Nfatc1 enhancer do not undergo EMT. Instead, these cells remain within the endocardium as a proliferative population to support valve leaflet extension. In contrast, loss of Nfatc1 function leads to enhanced EMT and decreased proliferation of valve endocardium and mesenchyme. The results of blastocyst complementation assays show that Nfatc1 inhibits EMT in a cell-autonomous manner. We further reveal by gene expression studies that Nfatc1 suppresses transcription of Snail1 and Snail2, the key transcriptional factors for initiation of EMT. CONCLUSIONS These results show that Nfatc1 regulates the cell-fate decision making of valve endocardial cells during valve development and coordinates EMT and valve elongation by allocating endocardial cells to the 2 morphological events essential for valve development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Medicine VEGF and RANKL Regulation of NFATc1 in Heart Valve Development

Rationale: NFATc1 (nuclear factor of activated T-cells cytoplasmic 1) activity in endocardial cushion (ECC) endothelial cells is required for normal ECC growth and extracellular matrix (ECM) remodeling during heart valve development. Objective: The mechanisms of NFATc1 activation and downstream effects on cell proliferation and ECMremodeling enzyme gene expression were examined in NFATc1 mutant...

متن کامل

Signaling Pathways Controlling Second Heart Field Development [2009;104:933–942] Heart Valve Development: Regulatory Networks in Development and Disease The Forgotten Lineage: Cardiac Fibroblasts and the Role of Periostin Conduction System Specification

In recent years, significant advances have been made in the definition of regulatory pathways that control normal and abnormal cardiac valve development. Here, we review the cellular and molecular mechanisms underlying the early development of valve progenitors and establishment of normal valve structure and function. Regulatory hierarchies consisting of a variety of signaling pathways, transcr...

متن کامل

VEGF and RANKL regulation of NFATc1 in heart valve development.

RATIONALE NFATc1 (nuclear factor of activated T-cells cytoplasmic 1) activity in endocardial cushion (ECC) endothelial cells is required for normal ECC growth and extracellular matrix (ECM) remodeling during heart valve development. OBJECTIVE The mechanisms of NFATc1 activation and downstream effects on cell proliferation and ECM-remodeling enzyme gene expression were examined in NFATc1 mutan...

متن کامل

Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis.

Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, ...

متن کامل

Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development

In vertebrates, heart pumping is required for cardiac morphogenesis and altering myocardial contractility leads to abnormal intracardiac flow forces and valve defects. Among the different mechanical cues generated in the developing heart, oscillatory flow has been proposed to be an essential factor in instructing endocardial cell fate toward valvulogenesis and leads to the expression of klf2a, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 109 2  شماره 

صفحات  -

تاریخ انتشار 2011